En poursuivant votre navigation, vous acceptez l'utilisation de cookies qui permettront notamment de vous offrir contenus, services, et publicités liés à vos centres d'intérêt. Fermer
France pays France (changer de pays)
              Recherche Avancée                                             Mon compte

Fiche Livre

Téléchargez le livre :  Analyse fondamentale - Espaces métriques, topologieques et normés. Avec exercices

Analyse fondamentale - Espaces métriques, topologieques et normés. Avec exercices


Szymon Dolecki
Hermann
Format : PDF
26,99



Extrait long    
RÉSUMÉ DU LIVRE - MOT DE L'AUTEUR - MOT DE L'ÉDITEUR
Ce livre d’analyse est destiné aux étudiants de troisième année de licence de mathématiques. L’auteur traite des connaissances fondamentales sur les espaces métriques et normés, accompagnées toutefois d’informations concises sur l'histoire des concepts et sur les développements récents. Plusieurs aspects sont traités de façon originale, motivée par la recherche de l’auteur (le traitement des suites ou le calcul relationnel). Deux appendices permettent aux étudiants motivés d'approfondir quelques sujets importants (nombres ordinaux, compacité) au-delà du cadre de la licence. Une esquisse de la théorie des ensembles consentira l'utilisation des concepts de relation et de cardinalité. Ensuite, on procède à partir d'une unique abstraction qui nous transporte du cadre des espaces euclidiens, familiers aux étudiants de la Licence 2, dans le domaine des espaces métriques, dont on étudie des classes principales (espaces séparables, compacts, complets et connexes), en découvrant des espaces universels, dont tout espace métrique (respectivement, métrique séparable) est un sous-espace, ou d'autres (ensemble de Cantor), dont tout espace métrique compact est une image continue. L'abstraction de la structure vectorielle permet d'étudier les espaces métriques avec beaucoup plus d'aisance qu'avec des contraintes supplémentaires d'une autre structure. On étudie ensuite les espaces vectoriels avant de les munir des métriques compatibles avec leur structure vectorielle (espaces normés) et d'y ajouter la complétude (espaces de Banach), en profitant des acquis de l'étude des espaces métriques complets. On se focalise enfin sur la classe des espaces munis de produit scalaire qui les rendent complets (espaces de Hilbert), où la notion d'orthogonalité nous approche de nos intuitions initiales des espaces euclidiens, en concluant à l'universalité (parmi les espaces de Hilbert) de l'espace des fonctions carré-sommables.


Ceux qui ont été intéressés par Analyse fondamentale - Espaces métriques, topologieques et normés. Avec exercices ont aussi consulté :